6,273 research outputs found

    Revising the kinematics of 12GHz CH3OH masers in W3(OH)

    Full text link
    We derive accurate proper motions of the CH3OH 12 GHz masers towards the W3(OH) UCHII region, employing seven epochs of VLBA observations spanning a time interval of about 10 yr. The achieved velocity accuracy is of the order of 0.1 km/s, adequate to precisely measure the relative velocities of most of the 12 GHz masers in W3(OH), with amplitude varying in the range 0.3 - 3 km/s. Towards W3(OH), the most intense 12 GHz masers concentrate in a small area towards the north (the northern clump) of the UCHII region. We have compared the proper motions of the CH3OH 12 GHz masers with those (derived from literature data) of the OH 6035 MHz masers, emitting from the same region of the methanol masers. In the northern clump, the two maser emissions emerge from nearby (but likely distinct) cloudlets of masing gas with, in general, a rather smooth variation of line-of-sight and sky-projected velocities, which suggests some connection of the environments and kinematics traced by both maser types. The conical outflow model, previously proposed to account for the 12 GHz maser kinematics in the northern clump, does not reproduce the new, accurate measurements of 12 GHz maser proper motions and has to be rejected. We focus on the subset of 12 GHz masers of the northern clump belonging to the "linear structure at P.A. = 130-140 degree", whose regular variation of LSR velocities with position presents evidence for some ordered motion. We show that the 3-dimensional velocities of this "linear distribution" of 12GHz masers can be well fitted considering a flat, rotating disk, seen almost edge-on.Comment: 32 pages, 10 figures; accepted in ApJ (Main Journal

    Very Large Array Detection of the 36 GHz Zeeman Effect in DR21W Revisited

    Full text link
    We report on the observation of the 36 GHz methanol maser line in the star forming region DR21W to accurately measure the Zeeman effect. The reported Zeeman signature by Fish et al. (2011) became suspicious after an instrumental effect was discovered in the early days of the Very Large Array Wide-band Digital Architecture (WIDAR) correlator commissioning. We conclude that the previously reported magnetic field strength of 58 mG ((1.7 Hz/mG)/z) is instrumental in nature and thus incorrect. With the improved performance of the array, we now deduce a 3 sigma limit of -4.7 to +0.4 mG ((1.7 Hz/mG)/z) for the line-of-sight component of the magnetic field strength in DR21W.Comment: 6 pages, 1 figure, accepted for publication in Ap

    Lithium abundances in nearby FGK dwarf and subgiant stars: internal destruction, Galactic chemical evolution, and exoplanets

    Full text link
    We derive atmospheric parameters and lithium abundances for 671 stars and include our measurements in a literature compilation of 1381 dwarf and subgiant stars. First, a "lithium desert" in the effective temperature (Teff) versus lithium abundance (A_Li) plane is observed such that no stars with Teff~6075 K and A_Li~1.8 are found. We speculate that most of the stars on the low A_Li side of the desert have experienced a short-lived period of severe surface lithium destruction as main-sequence or subgiant stars. Next, we search for differences in the lithium content of thin-disk and thick-disk stars, but we find that internal processes have erased from the stellar photospheres their possibly different histories of lithium enrichment. Nevertheless, we note that the maximum lithium abundance of thick-disk stars is nearly constant from [Fe/H]=-1.0 to -0.1, at a value that is similar to that measured in very metal-poor halo stars (A_Li~2.2). Finally, differences in the lithium abundance distribution of known planet-host stars relative to otherwise ordinary stars appear when restricting the samples to narrow ranges of Teff or mass, but they are fully explained by age and metallicity biases. We confirm the lack of a connection between low lithium abundance and planets. However, we find that no low A_Li planet-hosts are found in the desert Teff window. Provided that subtle sample biases are not responsible for this observation, this suggests that the presence of gas giant planets inhibit the mechanism responsible for the lithium desert.Comment: ApJ, in press. Complete Tables 1 and 3 are available upon reques

    Use of Earth Resources Technological Satellite (ERTS) data in a natural resource inventory

    Get PDF
    There are no author-identified significant results in this report

    Discovery of 6.035GHz Hydroxyl Maser Flares in IRAS18566+0408

    Full text link
    We report the discovery of 6.035GHz hydroxyl (OH) maser flares toward the massive star forming region IRAS18566+0408 (G37.55+0.20), which is the only region known to show periodic formaldehyde (4.8 GHz H2CO) and methanol (6.7 GHz CH3OH) maser flares. The observations were conducted between October 2008 and January 2010 with the 305m Arecibo Telescope in Puerto Rico. We detected two flare events, one in March 2009, and one in September to November 2009. The OH maser flares are not simultaneous with the H2CO flares, but may be correlated with CH3OH flares from a component at corresponding velocities. A possible correlated variability of OH and CH3OH masers in IRAS18566+0408 is consistent with a common excitation mechanism (IR pumping) as predicted by theory.Comment: Accepted for publication in the Astrophysical Journa

    EVLA Observations of OH Masers in ON 1

    Full text link
    This Letter reports on initial Expanded Very Large Array (EVLA) observations of the 6035 MHz masers in ON 1. The EVLA data are of good quality, lending confidence in the new receiver system. Nineteen maser features, including six Zeeman pairs, are detected. The overall distribution of 6035 MHz OH masers is similar to that of the 1665 MHz OH masers. The spatial resolution is sufficient to unambiguously determine that the magnetic field is strong (~ -10 mG) at the location of the blueshifted masers in the north, consistent with Zeeman splitting detected in 13441 MHz OH masers in the same velocity range. Left and right circularly polarized ground-state features dominate in different regions in the north of the source, which may be due to a combination of magnetic field and velocity gradients. The combined distribution of all OH masers toward the south is suggestive of a shock structure of the sort previously seen in W3(OH).Comment: 4 pages using emulateapj.cls including 2 tables and 2 color figure
    corecore